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1. STANDARD BASES IN POLYNOMIAL IDEALS

Gröbner bases.

Monomial orderings.Let R = k[x1, . . . , xm] be the ring of polynomials in
variablesx1, . . . , xm over a fieldk. By T = T (X) we denote the commuta-
tive semigroup (the semigroup of monomials) generated by elements ofX.
Forθ ∈ T , θ = xe1

1 . . . xem
m , define the degree ofθ asdeg θ = e1 + · · ·+ em.

Suppose that the monomials are ordered so that∀ θ ∈ T

1 ≤ θ, (1)

θ1 < θ2 =⇒ θθ1 < θθ2. (2)
1
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Such an ordering is called admissible.
• lexicographic ordering;
• total degree then lexicographic ordering;
• total degree then inverse lexicographic.

Notation. For any two monomialsθ1, θ2, we can define their least common
multiple θ = φ1θ1 = φ2θ2. An admissible ordering being given, we can
define for any polynomialf its leading monomialLm(f), its highest coef-
ficientHcoeff(f), and its highest termHterm(f) = Hcoeff(f) · Lm(f).

For any two polynomialsf1, f2 ∈ R, we define theirS-polynomialS(f1, f2) =
Hcoeff(f2)φ1f1 − Hcoeff(f2)φ2f2, whereφ1 · Lm(f1) = φ2 · Lm(f2) =
LCM(Lm(f1), Lm(f2)).

Suppose that a polynomialf ∈ R contains a termcφ, whereφ ∈ T ,
0 6= c = c(f, φ) ∈ k, which is divisible byLm(g): φ = ψ ·Lm(g). Then we
define the reduction relationf −→

g
h, whereh = f−c(f, φ)·ψ·g/ Hcoeff(g).

We writef −→
G

h if there isg ∈ G such thatf −→
g

h. For a reduction relation

→, we can define its transitive closure
+−→, its reflexive-transitive closure

∗−→,
and its symmetrical-reflexive-transitive closure

∗↔.

Main Theorem.

Theorem 1. Let I be an ideal of the ringR = k[x1, . . . , xm], < an admis-
sible ordering of monomialsT , G ⊂ I an autoreduced set. Without loss of
generality, we may assume thatHcoeff(gi) = 1 for anygi ∈ G. Then the
following conditions are equivalent:

(1) G is an autoreduced set of minimal rank in the idealI;
(2) anyf ∈ I admits aG-representation;
(3) Lm(G) generatesLm(I);
(4) f ∈ I ⇐⇒ f

∗−→
G

0;

The following conditions are necessary for preceding ones and, ifG gener-
atesI, they are also sufficient:

(4) if f
∗−→
G

f ′, f
∗−→
G

f ′′ wheref ′ andf ′′ are irreducible, thenf ′ = f ′′;

(5) S(f, f ′) ∗−→
G

0 for anyf, f ′ ∈ G;

(6) if f, f ′ ∈ G, then inG there are polynomialsf = f0, . . . , fi, . . . , fr =
f ′ such that

LCM{Lm(fi) : i = 0, . . . , s} = LCM(Lm(f), Lm(f ′)) (3)

andS(fi−1, fi)
∗−→
G

0 for anyi = 1, . . . , r.

Completion Algorithm.The general form of an algorithm for determining
a Gr̈obner basis based is the following:
input : a set of polynomialsG = {g1, . . . , gl}.
output: the Gr̈obner basisG = {g1, . . . , gk} of the ideal(G).
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begin
for any pair(gi, gj)

if not criterion(gi, gj) then
compute the normal formNF (S(gi, gj)) of S(gi, gj)
if NF (S(gi, gj)) 6= 0 then

G = G ∪ {NF (S(gi, gj))}
end

Normal form algorithm and normalG-representation.The strategies for
choosing the current pair in the completion algorithm and their influence on
the complexity of the algorithm are investigated in detail in many papers.
Here, we would like to emphasize the role of the normal form algorithm. It
is natural to reformulate the definitions of Gröbner bases in terms of normal
form algorithms.

Definition 1. Let a reduction relation−→
G

on the ringR be given and suppose

that we have a computable functionSel : R → R such thatf −→
G

Sel(f)

for any reduciblef ∈ F . Consider the computable functionS defined
recursively by the formula

S(f) :=

{
f, if f is irreducible

S(Sel(f)), if f is reducible.

We call anS of this kind anormal reduction processor anormal-form al-
gorithm for −→

G
and denote it as=⇒

G
. For example, we can choose the

terms being reduced in descending order and for a fixed term we try apply
the reducing elements in the order, they are listed inG. Similarly, a fi-
nite setG being fixed, for any partial one-valued functionSel : T → G
such thatSel(θ) is defined ⇐⇒ ∃g ∈ G such thatLm(g)|θ and in
this caseLm(Sel(θ))|θ, we can define a normalG-representation as aG-
representation whose terms are consistent with this function.

Theorem 2. Let I be an ideal of the ringR = k[x1, . . . , xm], < an ad-
missible ordering of monomialsT , G ⊂ I a subset ofI. Without loss of
generality, we may assume thatHcoeff(gi) = 1 for any gi ∈ G. Then,
for any normal-form algorithm,G is a Gröbner basis ofI iff one of the
following equivalent conditions holds

2′. anyf ∈ I admits a normalG-representation;
4′. for anyf ∈ I, we havef

∗
=⇒

G
0;

The following conditions are necessary for preceding ones and, ifG gener-
atesI, they are also sufficient:

5′. S(f, f ′)
∗

=⇒
G

0 for anyf, f ′ ∈ G;

6′. if f, f ′ ∈ G, then inG there are polynomials

f = f0, . . . , fi, . . . , fr = f ′



4 E.V. PANKRATIEV

which satisfy condition(3) and are such thatS(fi−1, fi)
∗

=⇒
G

0 for

anyi = 1, . . . , r.

Involutive bases.

Involutive divisions.

Definition 2. We say that an involutive divisionL is specified on the monoid
T if, for any finite subsetU ⊂ T and for any monomialu ∈ U , a submonoid
L(u, U) of T is specified such that

(1) if w ∈ L(u, U) andv|w, thenv ∈ L(u, U);
(2) if u, v ∈ U anduL(u, U) ∩ vL(v, U) 6= ∅, thenu ∈ vL(v, U) or

v ∈ uL(u, U);
(3) if v ∈ U andv ∈ uL(u, U), thenL(v, U) ⊆ L(u, U);
(4) if V ⊆ U , then∀ u ∈ V L(u, U) ⊆ L(u, V ).

The generators of the monoidL(u, U) are calledmultiplicative variables
for u. If w ∈ uL(u, U), then we writeu

∣∣
L
w and the monomialu is called

an(L-) involutive divisor of the monomialw, and the monomialw is called
an(L-) involutive multipleof u. In this case, we write the equalityw = uv
as w = u × v, otherwise asw = u · v, and the monomialv is called
nonmultiplicativefor u.

Example1. (1) M(xi1
1 . . . xik

k ) = {xk, . . . , xm} (the right Pommaret di-
vision).

(2) M(xik
k . . . xim

m ) = {x1, . . . , xk} (the left Pommaret division),
(3) M(xi1

1 . . . xim
m ) = {xk : ik = maxm

n=1 in}.
(4) Let U ⊂ T be a finite set. For any1 ≤ i ≤ m, we partitionU into

groups labeled by nonnegative integersd1, . . . , di:

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.
The variablexi is multiplicative foru ∈ U if i = 1 anddeg1(u) =
max{deg1(v) | v ∈ U}, or i > 1, u ∈ [d1, . . . , di−1] anddegi(u) =
max{degi(v) | v ∈ [d1, . . . , di−1]}.

Involutive bases.

Definition 3. We say that a polynomialf is involutively reducible tog by
polynomialh at a monomialm, present inf , and without mentioning the
monomialm we write f −−→

inv h
g, if f is reducible tog in the usual sense

andLm(h)
∣∣
L
m. The relation−−→

inv G
for an arbitrary setG of polynomials, as

well as its transitive
+−−→

inv G
and reflexive-transitive

∗−−→
inv G

closures are defined

in the natural way. If a reduction relation is given, the anormal-formis de-
fined. In this case it is calledinvolutive. A nonmultiplicative prolongation
of a polynomialis defined as its product by a variable which is nonmulti-
plicative for its leading monomial.
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Definition 4. LetR = K[x1, . . . , xm] be a polynomial ring,X = {x1, . . . , xm},
I be an ideal ofR, G ⊂ I be a finite set, and

∣∣
L

be an involutive division on
the set of monomialsT . The setG is called aninvolutive basisif the ideal
I if, for any nonzerof ∈ I there is aninvolutive representation:

f =
r∑

i=1

ciθigj(i), 0 6= ci ∈ K, θi ∈ T (M(Lm(gi))), gj(i) ∈ G. (4)

Theorem 3. Let R = K[x1, . . . , xm] be a polynomial ring in the variables
X = {x1, . . . , xm}, I be an ideal ofR, G ⊂ I be a finite set, and

∣∣
L

be an
involutive division on the set of monomialsT . Suppose thatHcoeff(gi) = 1
for anygi ∈ G. Then, the following conditions are equivalent:

(1) G is an involutive basis of the idealI;
(2) Lm(G) involutively generatesLm(I);
(3) for anyf ∈ I, we havef

∗−−→
inv G

0;

(4) if f − f ′ ∈ I andf, f ′ are involutively irreducible, thenf = f ′;
(5) if f ∈ I andf is involutively irreducible, thenf = 0.

The following conditions are necessary for preceding ones and, ifG gener-
atesI, they are also sufficient:

(6) if f ∈ G and xi ∈ NM(Lm(f)), thenxif admits an involutive
representation;

(7) xif
∗−−→

inv G
0 for anyf ∈ G andxi ∈ NM(Lm(f)).

Characteristic sets (Wu’s method).This method is the closest to the meth-
ods used in differential algeba. Its specific features:

• in any polynomial, a leading variable (leader) is chosen;
• reduction relation is replaced by pseudoreduction relation;
• the variables are divided into “leaders” and “nonleaders”;
• the results are divided into those valid “in general” and “in particular

cases”.

Applications of standard bases.
• Consistemsy of systems of algebraic equations;
• Hilbert functions;
• geometrical applications (Wu’s method).

Problems under consideration.
• Comparison of Gr̈obner bases and involutive bases;
• numerical experiments: sequential and parallel methods (Mityunin

et al.);
• “good” involutive divisions: comparison of “admissible” and “con-

tinuous” divisions (Semenov), projections of involutive divisions
(Shemyakova);

• classification of admissible monomial orderings, investigation of or-
derings of differential monomials (Zobnin, Ovchinnikov);
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• study of monomial orderings preserving Gröbner bases (Zobnin);
• passage from one involutive bases to another one (involutive Gröbner

walk) (Golubitsky)

Differential modules. LetF be a differential field with a set∆ = {δ1, . . . , δm

of derivation operators,D = F [δ1, . . . , δm] be the ring of linear differen-
tial operators overF andM be a finitely generated (left)D-module. The
theory of standard bases (Gröbner, involutive bases and characteristic sets)
can be applied to submodules ofM . In particular, the Hilbert polynomials
(differential dimension polynomials) can be computed.

However, in this case, the Hilbert polynomials are not invariant with re-
spect to changes of variables. For any submodule there exist a minimal
differential dimension polynomial, but its determination is a difficult prob-
lem.

2. STANDARD BASES IN DIFFERENTIAL ALGEBRA

Considering the ring of differential polynomialsR = F{y1, . . . , yn} over
a differential fieldF with a set of derivation operators∆ = {δ1, . . . , δm}.
To construct a theory of standard bases in this ring, we should

(1) standardize the main definitions;
(2) determine the set of ideals under consideration;
(3) develop algorithmic procedures.

Problems arise when introducing definitions
• reduction procedure;
• autoreduced setsA (whether{1} is an autoreduced set);
• coherent autoreduced sets (several nonequivalent definitions),
• characteristic sets of a differential ideal.

The possibilities for the class of ideals under consideration:
• differential ideals;
• radical (perfect) differential ideals;
• prime differential ideals;
• regular differential ideals;
• etc.

The main tool used for investigation of differential ideals is the theory of
autoreduced (characteristic) sets developed by J. Ritt and E. Kolchin. It is
known that, for a prime differential idealI, if an autoreduced setA satisfies
property (1) (is minimal), then properties (4) (normal simplifier) and (5)
(coherence) are also fulfilled. The problem is how to construct the primary
decomposition of a perfect differential idealI = {A}? This problem is
very hard.

Definitions and notation. We introduce an admissible order on the set of
derivativesΘ = {δi1

1 . . . δim
m yj}, wherei1, . . . , im ≥ 0, 1 ≤ j ≤ n. For any

differential polynomialf ∈ R, the highest derivativeθ ∈ Θ present inf is
called theleaderof f (we writeθ = Lf ). By Sf = ∂f/∂Lf we denote the
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separantof f and byIf we denote theinitial of f (the leading coefficient
of f considered as a polynomial inLf ), and we denoteHf = SfIf . The
relation of differential reductionf −→

g
f1 allows one to eliminate formf the

proper derivatives ofLg as well as the powers ofLg higher than or equal
to those present ing. However, in this process, we should multiplyf by
some powers ofSg andIg; hence, we cannot obtain in this way a relation
satisfying property (4) (a canonical simplifier).

Consider a perfect differential idealI = {A} generated (as a perfect
differential ideal) by one irreducible ordinary differential polynomialA =
{f}. The primary decomposition ofI consists in this case of a general
component, for whichA is the minimal autoreduced set, and, possibly, sin-
gular components. As a rule,f does not generate the general component as
the differential ideal{A}. M.V. Kondratieva proposed a partial method for
determining the generators of this prime differential ideal and for construct-
ing the primary decomposition. She also obtained the following sufficient
condition for the perfect differential idealI = {A} to be prime.

Theorem 4. Let f = y(k)y(s) + y(k+1) + y(k) ∗ g(y, y′, . . . y(s+1)), where
s > k + 1. Then,[f ] : H∞

f = {f}.
Ritt-Kolchin algorithm.
Input: Φ = {f1, . . . , fr} is a finite set of∆-polynomials
Output: A is a coherent autoreduced set of∆-polynomials

[A] ⊆ [Φ] ⊆ [A] : H∞
A

Begin
A := A(Φ)
if A = {f}, f ∈ F then

return
else

G := Φ \ A
W := ∅
for anyg ∈ G

r := remainder ofg with respect toA
if r 6= 0 then

W := W ∪ {r}
for any pairfi, fj ∈ A

r := remainder ofS∆(fi, fj) with respect toA
if r 6= 0 then

W := W ∪ {r}
if W 6= ∅ then

Φ := Φ ∪W
Algorithm RK1 (Φ,A)

End
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Carra-Ferro and Ollivier approach. F. Ollivier and Carra-Ferro endow
the set of differential monomials with an admissible order and defines deriva-
tion operations on the set of differential monomials (note that a derivation
operation applied to a differential monomial in the ring of differential poly-
nomials gives a differential polynomial). Then, he defines a standard basis
of a differential ideal as a set satisfying property 3 of Theorem 1 for differ-
ential ideals. The main deficiency of this definition is that, as a rule, such
a basis is infinite. For example, the standard basis in this sense for the dif-
ferential ideal[y2] in the ring of ordinary differential polynomialsC{y} is
infinite.

Mansfield’s results. Constructing the theory of differential Gröbner bases,
E. Mansfield considers autoreduced differential systems satisfying some ad-
ditional conditions, namely, CNI (Coherent with Null Intersection), SPR
(S(G) is Pseudo-Reduced), and GAC (G is Almost Complete).

Rosenfeld-Gr̈obner method. Other generalizations of the Buchberger al-
gorithm deal with some classes of differential ideals different from the
prime ones. The most fruitful algorithm used in constructive differential
algebra is proposed by Boulier, Lazard, Ollivier, and Petitot, and is known
as the Rosenfeld–Gröbner algorithm. This algorithm represents a perfect
differential ideal as an intersection ofregulardifferential ideals. In contrast
to the primary decomposition, this representation depends on the ranking of
differential indeterminates.

Some numerical experiments.In a series of numerical experiments, the
systems of Euler equations in two and three space variables were consid-
ered for different rankings by N. Makarevich. It was found out that not
only the computation time and the memory used depend on the ranking, but
also the number of components is different for different rankings. For some
rankings, we did not succeed in determining the regular representation. The
most interesting fact is that, for all cases where we did not succeed in deter-
mining the regular representation for three space variables, we did not also
succeed in determining such a representation for two space variables.

Hubert approach. Another class of differential ideal was introduced by
E. Hubert. It is known that, for prime differential ideals, the conditions 4
and 5 are equivalent. Hubert proposed to consider the differential ideals
for which these conditions are equivalent, She called such ideals character-
izable. Note that the definition of a characterizable ideal depends on the
ranking of differential polynomials (there are differential ideal characteriz-
able for one ranking and noncharacterizable for another one).

Differential Gr öber walk. It is important to know how to pass from a
characteristic set with respect to a ranking of the differential polynomials to
the characteristic set with respect to another ranking. A method for solving
this problem is proposed by O. Golubitsky. This is a generalization of the
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algorithm for passing from the Gröbner basis of a polynomial ideal with
respect to an admissible ordering of monomials to the Gröbner basis of the
same ideal with respect to another ordering.
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